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Review of Last Lecture



Value Function

Definition
The state-value function vπ (s) of an MDP is the expected return  
starting from state s, and then following policy π

vπ (s) =  Eπ [Gt | S t  = s]

Definition
The action-value function qπ (s, a) is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ [Gt | S t = s,A t = a]

Lecture 5: Value Function and Iteration 



Example State Value Function 
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Definition
The state-value function vπ (s) of an MDP is the expected return  
starting from state s, and then following policy π

vπ (s) =  Eπ [Gt | S t  = s]

0.812 0.868 0.918
+ 1

0.762 0.660
- 1

0.705 0.655 0.611 0.388



Bellman	Equation



Bellman Equation
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The state-value function can be decomposed into immediate reward 
plus discounted value of successor state (state you end up in next)

vπ (s) =  Eπ [R t+1 +  γ vπ (S t+1) | S t  =  s]  

The action-value function can similarly be decomposed,

qπ(s, a) = Eπ [R t+1 + γ qπ(St+1, A t+1) | S t = s,A t = a]

immediate Future	value

immediate Future	value

Note	how	they	are	defined	recursively



Bellman Expectation Equation
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immediate Future	value

Value functions can be decomposed into immediate 
reward plus discounted value of successor states



Lecture 5: Value Function and Iteration 

Optimality



Optimal Value Function

Definition
The optimal state-value function v∗(s) is the maximum value  
function over all policies

π∗ πv (s) =  max v (s)

The optimal action-value function q∗(s, a) is the maximum  
action-value function over allpolicies

π∗ πq (s, a) = max q (s, a)

The optimal value function specifies the best possible  
performance in the MDP.
An MDP is “solved” when we know the optimal value function.
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Optimal Policy: How do we compare policies? 

Define a partial ordering over policies:
A	policy	A	is	more	optimal	(or	equally	optimal)	to	another	policy	B	when	
the	value	expected	from	following	policy	A	is	greater	than	or	equal	to	the	
value	expected	than	following	policy	B	at	every	state in	the	MDP.

π	≥	π if	vπ	(s)	≥	vπj	(s),∀s

Theorem
For	any	Markov	Decision Process

There	exists	an	optimal	policy	π∗that	is	better	than	or	equal	to	all	
other	policies,	π∗ ≥π,	∀π
All	optimal	policies	achieve	the	optimal	value	function,		vπ∗
(s)	= v∗(s)
All	optimal	policies	achieve	the	optimal	action-value	function,		qπ∗
(s,a) = q∗(s,a)
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Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s,a),

There is always a deterministic optimal policy for any MDP  
If we know q∗(s, a), we immediately have the optimal policy

Lecture 5: Value Function and Iteration 



Recall: Bellman Expectation Equation
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Bellman	Expectation	Equations:	

How	do	we	get	the	highest	possible	value?	
(aka	the	optimal	value	function)?



Recall: Bellman Equation Summary
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Bellman	Expectation	Equations:	

How	do	we	get	the	highest	possible	value?	
(aka	the	optimal	value	function)?

We	take	the	maximum	action	value,	Q*(s,a)	



Optimal Value Function for State Value
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Optimal State Value Function
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Optimal State Value Function
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Recall:



Optimal State Value Function
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Recall:

So	how	do	we	get	q*(s,a)?	



Optimal State Value Function
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Recall:

So	how	do	we	get	q*(s,a)?		Use	the	
optimal	state	value	function!



Optimal Value Function for State Value
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Remember:	we	already	defined	q	in	terms	of	v!



Optimal Value Function for Action Value
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Optimal	Q	in	terms	of	V	



Optimal State Value Function
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Optimal State Value Function
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Replace	this	with:	



Optimal State Value Function
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Replace	this	with:	

Finally,	we	get:	



Optimal Value Function for State Value (2)
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Optimal	State	Value	written	in	terms	of	itself!



Bellman Equation Summary
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Bellman	Expectation	Equations:	

Bellman	Optimality	Equations:	
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Dynamic Programming Methods



Introduction to Approximating Value Functions
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In	practice,	computing	value	functions	can	be	
infeasible,	so	we	will	spend	much	of	the	course	
exploring	ways	to	approximate the	value	
function.	

Our	first	approach	will	be	Dynamic	
Programming	methods.		The	first	Dynamic	
Programming	method	we	will	learn	to	
approximate	the	value	function	is	Value	
Iteration.	



Dynamic Programming is a very general solution method for  
problems which have two properties:

Overlapping subproblems
Subproblems recur many times  
Solutions can be cached andreused

Markov decision processes satisfy both properties  
Bellman equation gives recursive decomposition  
Value function stores andreuses solutions

Dynamic Programming
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Value Iteration



§§ Start with Random initial values (ex: V(s) = 0)
§§ For each state S, calculate	its	new	V	based	on	its	
neighbor’s	values

§§ This is called a value update or Bellman update
§§ Repeat until convergence (can also stop when no value 
changes more than a preset parameter, δ)

§§ Theorem: will converge to unique optimal values
§§ Basic idea: approximations get refined towards optimal values
§§ Policy may converge long before values do

Steps

Value Iteration Steps
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Lecture 3: Planning by Dynamic Programming
Value Iteration

Value Iteration in MDPs

Problem: find optimal policy π
Solution: iterative application of Bellman optimality
v1 →  v2 →  ... → v∗
Steps for Value Iteration.      

At each iteration k +  1  
For all states s ∈S
Update vk+1(s) from vk (s ') using optimality equation

Intermediate value functions may not correspond to any policy

Value Iteration
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Value Iteration and Optimal Policy
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1. Given environment 2. Calculate statevalues

3. Extract optimal policy 4. Execute actions



g

Value Iteration Example
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Reward	of	-1	for	every	action,	only	1	goal	state	
with	reward	0	(terminal).	Actions	are	moving	up,	
down,	left,	right.	If	you	move	in	a	direction,	you	
have	a	100%	chance	of	moving	in	that	direction.	
Gamma	=	1



Value Iteration Example 
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Initialize	to	random	values	
(in	this	case	all	0)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

V1



Value Iteration Example Iteration 1
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

V1

Apply	Bellman	Optimality	
Equation	to	every	cell



Value Iteration Example Iteration 1
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

V1

Apply	Bellman	Optimality	
Equation	to	every	cell

-1	+	(1	*	0)	=	-1



Value Iteration Example Iteration 1
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Apply	Bellman	Optimality	
Equation	to	every	cell

V1

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1



Value Iteration Example Iteration 2
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Apply	Bellman	Optimality	
Equation	to	every	cell

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1	+	(1	*	0)	=	-1

-1	+	(1	*	-1)	=	-2



Value Iteration Example Iteration 3
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-1	+	(1	*	0)	=	-1

-1	+	(1	*	-2)	=	-3

0 -1 -2 -2

-1 -2 -2 -2

-2 -2 -2 -2

-2 -2 -2 -2

-1	+	(1*	-1	)	=	-2



Value Iteration Example Iteration 4?
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Value Iteration Example Iteration 4
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0 -1 -2 -3

-1 -2 -3 -3

-2 -3 -3 -3

-3 -3 -3 -3



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

0 -1 -2 -2

-1 -2 -2 -2

-2 -2 -2 -2

-2 -2 -2 -2

0 -1 -2 -3

-1 -2 -3 -3

-2 -3 -3 -3

-3 -3 -3 -3

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -4

-3 -4 -4 -4

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -5

-3 -4 -5 -5

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -5

-3 -4 -5 -6

g

Problem V1 V2 V3

V4 V5 V6 V7

Value Iteration Example
Lecture 5: Value Function and Iteration



0 -1 -2 -3
-1 -2 -3 -4
-2 -3 -4 -5
-3 -4 -5 -6

After	Iteration	7:
Policy:	

Greedily	pick	the	state	
with	highest	state	
value	



Lecture 3: Planning by Dynamic Programming
Value Iteration

Value Iteration in MDPs

Problem: find optimal policy π
Solution: iterative application of Bellman optimality
v1 →  v2 →  ... → v∗
Steps for Value Iteration.      

At each iteration k +  1  
For all states s ∈S
Update vk+1(s) from vk (s ') using optimality equation

Intermediate value functions may not correspond to any policy

Value Iteration
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Use of Value Iteration
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We	can	actually	solve	an	MDP	now!

Given	full	information	about	the	MDP	
that	describes	our	RL	problem,	we	can	
now	find	an	optimal	policy.

But	can	we	do	it	more	efficiently?



Limitations of Value Iteration
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Two	weaknesses:

• Long	time	to	converge	without	policy	
changing	

• If	all	we	really	care	about	is	the	
optimal	policy,	why	not	just	find	that	
policy	directly?
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Policy Iteration



Policy Iteration
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Finding	policy	directly	=	Policy	Iteration!

1. start	with	a	random	policy,	
2. compute	each	state’s	value	given	that	policy,	
3. select	a	new	optimal	policy by	acting	greedy	

on	those	new	state	values



Create	a	random	policy	by	selecting	a		random	action	for	each	state.	

While	not	done:	
(a)	Compute	the	value	for	each	state	given	the	current	
policy.	
(b)	Update	state	values	using	Bellman	expectation
equation
(c)	Given	these	new	values,	
select	the	optimal	action	for	each	state.	

If	no	action	changes,	halt
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Policy Iteration Steps



Undiscounted episodic MDP (γ =  1)  
Nonterminal states 1, ..., 14
Two terminal states (shown as shaded squares)  
Actions leading out of the grid leave state unchanged  
Reward is −1until the terminal state is reached  
Agent follows uniform random policy (probability of 
.25 for each action, with action chosen randomly)

π(n|·) = π(e|·) = π(s|·) = π(w |·) = 0.25
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Policy Iteration Steps



Iterative Policy Evaluation in SmallGridworld

Vk
Vk

k = 0

k = 1

k = 2

random
policy

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 0.0

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

vk for the  
Random Policy

Greedy Policy
w.r.t. vk
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Policy Iteration Steps



Iterative Policy Evaluation in SmallGridworld

Vk
Vk

k = 0

k = 1

k = 2

random
policy

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 0.0

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

vk for the  
Random Policy

Greedy Policy
w.r.t. vk
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Policy Iteration Steps

.25(-1	+	.25*0)	*	4	=	-1		



Iterative Policy Evaluation in SmallGridworld

Vk
Vk

k = 0

k = 1

k = 2

random
policy

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 0.0

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

vk for the  
Random Policy

Greedy Policy
w.r.t. vk
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Policy Iteration Steps

.25(-1	+	1*0)	*	4	=	-1		

.25(-1	+	1*-1)	*	4	=	-2

.25(-1	+	1*-1)	*	3	+	

.25(-1	+	1*0)	*1	=	-1.75



Iterative Policy Evaluation in Small Gridworld (2)

k = 10

°

k = 3

optimal
policy

0.0 -2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4 0.0

0.0 -6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1 0.0

0.0 -14. -20. -22.
-14. -18. -20. -20.
-20. -20. -18. -14.
-22. -20. -14. 0.0

k = ∞
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Policy Iteration Steps

vk for the  
Random Policy

Greedy Policy
w.r.t. vk

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

K = 2



Iterative Policy Evaluation in Small Gridworld (2)

k = 10

°

k = 3

optimal
policy

0.0 -2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4 0.0

0.0 -6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1 0.0

0.0 -14. -20. -22.
-14. -18. -20. -20.
-20. -20. -18. -14.
-22. -20. -14. 0.0

k = ∞
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Policy Iteration Steps

vk for the  
Random Policy

Greedy Policy
w.r.t. vk

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

K = 2 .25(-1	+	0)	+	.25(-1	+	-1.75)	+	
.25(-1	+	-2)	*	2	=	2.4	

.25(-1	+	-2)	*4	=	-3.0	

.25(-1	+	-1.75)	+

.25(-1	+	-2)	*	3	=	-2.9



Given a policyπ
Evaluate the policy π

vπ(s) = E [R t+1 + γR t+2 + ...|St = s]

Improve the policy by acting greedily with respect to vπ

πj = greedy(vπ )

In Small Gridworld improved policy was optimal, πj =  π∗
In general, need more iterations of improvement /  evaluation  
But this process  of policy iteration always converges to π∗
(We always converge to the optimal policy!)
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Policy Iteration Steps
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Policy Iteration Summary

Another	way	of	solving	MDP,	like	Value	
Iteration,	but	directly	solves	for	policy.

Usually	requires	less	iterations,	and	uses	
Bellman	Expectation	Equation	(Value	
Iteration	uses	Bellman	Optimality	Equation)
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Next Week: Model-Free Methods

What	if	we	didn’t	have	all	this	
information	about	the	MDP?	
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Next Week: Model-Free Methods

What	if	we	didn’t	have	all	this	
information	about	the	MDP?	

Model	Free	Methods!	(Next	Lecture!)



Questions? 


