
Lecture 5: Value Function and Iteration

Lecture 5/6: Value and Policy Iteration

Zack Khan and Kevin Chen
Lecture 5: Value Function and Iteration

1.Review of Last Lecture (Action and State Value Function)

2.Bellman

3.Optimality

4. Value Iteration

5. Policy Iteration

6. Snippet of Model-Free Methods

Outline
Lecture 5: Value Function and Iteration

Lecture 5: Value Function and Iteration

Review of Last Lecture

Value Function

Definition
The state-value function vπ (s) of an MDP is the expected return
starting from state s, and then following policy π

vπ (s) = Eπ [Gt | S t = s]

Definition
The action-value function qπ (s, a) is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ [Gt | S t = s,A t = a]

Lecture 5: Value Function and Iteration

Example State Value Function
Lecture 5: Value Function and Iteration

Definition
The state-value function vπ (s) of an MDP is the expected return
starting from state s, and then following policy π

vπ (s) = Eπ [Gt | S t = s]

0.812 0.868 0.918
+ 1

0.762 0.660
- 1

0.705 0.655 0.611 0.388

Bellman	Equation

Bellman Equation
Lecture 5: Value Function and Iteration

The state-value function can be decomposed into immediate reward
plus discounted value of successor state (state you end up in next)

vπ (s) = Eπ [R t+1 + γ vπ (S t+1) | S t = s]

The action-value function can similarly be decomposed,

qπ(s, a) = Eπ [R t+1 + γ qπ(St+1, A t+1) | S t = s,A t = a]

immediate Future	value

immediate Future	value

Note	how	they	are	defined	recursively

Bellman Expectation Equation
Lecture 5: Value Function and Iteration

immediate Future	value

Value functions can be decomposed into immediate
reward plus discounted value of successor states

Lecture 5: Value Function and Iteration

Optimality

Optimal Value Function

Definition
The optimal state-value function v∗(s) is the maximum value
function over all policies

π∗ πv (s) = max v (s)

The optimal action-value function q∗(s, a) is the maximum
action-value function over allpolicies

π∗ πq (s, a) = max q (s, a)

The optimal value function specifies the best possible
performance in the MDP.
An MDP is “solved” when we know the optimal value function.

Lecture 5: Value Function and Iteration

Optimal Policy: How do we compare policies?

Define a partial ordering over policies:
A	policy	A	is	more	optimal	(or	equally	optimal)	to	another	policy	B	when	
the	value	expected	from	following	policy	A	is	greater	than	or	equal	to	the	
value	expected	than	following	policy	B	at	every	state in	the	MDP.

π	≥	π if	vπ	(s)	≥	vπj	(s),∀s

Theorem
For	any	Markov	Decision Process

There	exists	an	optimal	policy	π∗that	is	better	than	or	equal	to	all	
other	policies,	π∗ ≥π,	∀π
All	optimal	policies	achieve	the	optimal	value	function,		vπ∗
(s)	= v∗(s)
All	optimal	policies	achieve	the	optimal	action-value	function,		qπ∗
(s,a) = q∗(s,a)

Lecture 5: Value Function and Iteration

Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s,a),

There is always a deterministic optimal policy for any MDP
If we know q∗(s, a), we immediately have the optimal policy

Lecture 5: Value Function and Iteration

Recall: Bellman Expectation Equation
Lecture 5: Value Function and Iteration

Bellman	Expectation	Equations:	

How	do	we	get	the	highest	possible	value?	
(aka	the	optimal	value	function)?

Recall: Bellman Equation Summary
Lecture 5: Value Function and Iteration

Bellman	Expectation	Equations:	

How	do	we	get	the	highest	possible	value?	
(aka	the	optimal	value	function)?

We	take	the	maximum	action	value,	Q*(s,a)	

Optimal Value Function for State Value
Lecture 5: Value Function and Iteration

Optimal State Value Function
Lecture 5: Value Function and Iteration

Optimal State Value Function
Lecture 5: Value Function and Iteration

Recall:

Optimal State Value Function
Lecture 5: Value Function and Iteration

Recall:

So	how	do	we	get	q*(s,a)?	

Optimal State Value Function
Lecture 5: Value Function and Iteration

Recall:

So	how	do	we	get	q*(s,a)?		Use	the	
optimal	state	value	function!

Optimal Value Function for State Value
Lecture 5: Value Function and Iteration

Remember:	we	already	defined	q	in	terms	of	v!

Optimal Value Function for Action Value
Lecture 5: Value Function and Iteration

Optimal	Q	in	terms	of	V	

Optimal State Value Function
Lecture 5: Value Function and Iteration

Optimal State Value Function
Lecture 5: Value Function and Iteration

Replace	this	with:	

Optimal State Value Function
Lecture 5: Value Function and Iteration

Replace	this	with:	

Finally,	we	get:	

Optimal Value Function for State Value (2)
Lecture 5: Value Function and Iteration

Optimal	State	Value	written	in	terms	of	itself!

Bellman Equation Summary
Lecture 5: Value Function and Iteration

Bellman	Expectation	Equations:	

Bellman	Optimality	Equations:	

Lecture 5: Value Function and Iteration

Dynamic Programming Methods

Introduction to Approximating Value Functions
Lecture 5: Value Function and Iteration

In	practice,	computing	value	functions	can	be	
infeasible,	so	we	will	spend	much	of	the	course	
exploring	ways	to	approximate the	value	
function.	

Our	first	approach	will	be	Dynamic	
Programming	methods.		The	first	Dynamic	
Programming	method	we	will	learn	to	
approximate	the	value	function	is	Value	
Iteration.	

Dynamic Programming is a very general solution method for
problems which have two properties:

Overlapping subproblems
Subproblems recur many times
Solutions can be cached andreused

Markov decision processes satisfy both properties
Bellman equation gives recursive decomposition
Value function stores andreuses solutions

Dynamic Programming
Lecture 5: Value Function and Iteration

Lecture 5: Value Function and Iteration

Value Iteration

§§ Start with Random initial values (ex: V(s) = 0)
§§ For each state S, calculate	its	new	V	based	on	its	
neighbor’s	values

§§ This is called a value update or Bellman update
§§ Repeat until convergence (can also stop when no value
changes more than a preset parameter, δ)

§§ Theorem: will converge to unique optimal values
§§ Basic idea: approximations get refined towards optimal values
§§ Policy may converge long before values do

Steps

Value Iteration Steps
Lecture 5: Value Function and Iteration

Lecture 3: Planning by Dynamic Programming
Value Iteration

Value Iteration in MDPs

Problem: find optimal policy π
Solution: iterative application of Bellman optimality
v1 → v2 → ... → v∗
Steps for Value Iteration.

At each iteration k + 1
For all states s ∈S
Update vk+1(s) from vk (s ') using optimality equation

Intermediate value functions may not correspond to any policy

Value Iteration
Lecture 5: Value Function and Iteration

Value Iteration and Optimal Policy
Lecture 5: Value Function and Iteration

1. Given environment 2. Calculate statevalues

3. Extract optimal policy 4. Execute actions

g

Value Iteration Example
Lecture 5: Value Function and Iteration

Reward	of	-1	for	every	action,	only	1	goal	state	
with	reward	0	(terminal).	Actions	are	moving	up,	
down,	left,	right.	If	you	move	in	a	direction,	you	
have	a	100%	chance	of	moving	in	that	direction.	
Gamma	=	1

Value Iteration Example
Lecture 5: Value Function and Iteration

Initialize	to	random	values	
(in	this	case	all	0)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

V1

Value Iteration Example Iteration 1
Lecture 5: Value Function and Iteration

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

V1

Apply	Bellman	Optimality	
Equation	to	every	cell

Value Iteration Example Iteration 1
Lecture 5: Value Function and Iteration

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

V1

Apply	Bellman	Optimality	
Equation	to	every	cell

-1	+	(1	*	0)	=	-1

Value Iteration Example Iteration 1
Lecture 5: Value Function and Iteration

Apply	Bellman	Optimality	
Equation	to	every	cell

V1

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

Value Iteration Example Iteration 2
Lecture 5: Value Function and Iteration

Apply	Bellman	Optimality	
Equation	to	every	cell

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1	+	(1	*	0)	=	-1

-1	+	(1	*	-1)	=	-2

Value Iteration Example Iteration 3
Lecture 5: Value Function and Iteration

-1	+	(1	*	0)	=	-1

-1	+	(1	*	-2)	=	-3

0 -1 -2 -2

-1 -2 -2 -2

-2 -2 -2 -2

-2 -2 -2 -2

-1	+	(1*	-1)	=	-2

Value Iteration Example Iteration 4?
Lecture 5: Value Function and Iteration

Value Iteration Example Iteration 4
Lecture 5: Value Function and Iteration

0 -1 -2 -3

-1 -2 -3 -3

-2 -3 -3 -3

-3 -3 -3 -3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

0 -1 -2 -2

-1 -2 -2 -2

-2 -2 -2 -2

-2 -2 -2 -2

0 -1 -2 -3

-1 -2 -3 -3

-2 -3 -3 -3

-3 -3 -3 -3

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -4

-3 -4 -4 -4

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -5

-3 -4 -5 -5

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -5

-3 -4 -5 -6

g

Problem V1 V2 V3

V4 V5 V6 V7

Value Iteration Example
Lecture 5: Value Function and Iteration

0 -1 -2 -3
-1 -2 -3 -4
-2 -3 -4 -5
-3 -4 -5 -6

After	Iteration	7:
Policy:	

Greedily	pick	the	state	
with	highest	state	
value	

Lecture 3: Planning by Dynamic Programming
Value Iteration

Value Iteration in MDPs

Problem: find optimal policy π
Solution: iterative application of Bellman optimality
v1 → v2 → ... → v∗
Steps for Value Iteration.

At each iteration k + 1
For all states s ∈S
Update vk+1(s) from vk (s ') using optimality equation

Intermediate value functions may not correspond to any policy

Value Iteration
Lecture 5: Value Function and Iteration

Use of Value Iteration
Lecture 5: Value Function and Iteration

We	can	actually	solve	an	MDP	now!

Given	full	information	about	the	MDP	
that	describes	our	RL	problem,	we	can	
now	find	an	optimal	policy.

But	can	we	do	it	more	efficiently?

Limitations of Value Iteration
Lecture 5: Value Function and Iteration

Two	weaknesses:

• Long	time	to	converge	without	policy	
changing	

• If	all	we	really	care	about	is	the	
optimal	policy,	why	not	just	find	that	
policy	directly?

Lecture 5: Value Function and Iteration

Policy Iteration

Policy Iteration
Lecture 5: Value Function and Iteration

Finding	policy	directly	=	Policy	Iteration!

1. start	with	a	random	policy,	
2. compute	each	state’s	value	given	that	policy,	
3. select	a	new	optimal	policy by	acting	greedy	

on	those	new	state	values

Create	a	random	policy	by	selecting	a		random	action	for	each	state.	

While	not	done:	
(a)	Compute	the	value	for	each	state	given	the	current	
policy.	
(b)	Update	state	values	using	Bellman	expectation
equation
(c)	Given	these	new	values,	
select	the	optimal	action	for	each	state.	

If	no	action	changes,	halt

Lecture 5: Value Function and Iteration

Policy Iteration Steps

Undiscounted episodic MDP (γ = 1)
Nonterminal states 1, ..., 14
Two terminal states (shown as shaded squares)
Actions leading out of the grid leave state unchanged
Reward is −1until the terminal state is reached
Agent follows uniform random policy (probability of
.25 for each action, with action chosen randomly)

π(n|·) = π(e|·) = π(s|·) = π(w |·) = 0.25

Lecture 5: Value Function and Iteration

Policy Iteration Steps

Iterative Policy Evaluation in SmallGridworld

Vk
Vk

k = 0

k = 1

k = 2

random
policy

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 0.0

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

vk for the
Random Policy

Greedy Policy
w.r.t. vk

Lecture 5: Value Function and Iteration

Policy Iteration Steps

Iterative Policy Evaluation in SmallGridworld

Vk
Vk

k = 0

k = 1

k = 2

random
policy

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 0.0

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

vk for the
Random Policy

Greedy Policy
w.r.t. vk

Lecture 5: Value Function and Iteration

Policy Iteration Steps

.25(-1	+	.25*0)	*	4	=	-1		

Iterative Policy Evaluation in SmallGridworld

Vk
Vk

k = 0

k = 1

k = 2

random
policy

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 0.0

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

vk for the
Random Policy

Greedy Policy
w.r.t. vk

Lecture 5: Value Function and Iteration

Policy Iteration Steps

.25(-1	+	1*0)	*	4	=	-1		

.25(-1	+	1*-1)	*	4	=	-2

.25(-1	+	1*-1)	*	3	+	

.25(-1	+	1*0)	*1	=	-1.75

Iterative Policy Evaluation in Small Gridworld (2)

k = 10

°

k = 3

optimal
policy

0.0 -2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4 0.0

0.0 -6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1 0.0

0.0 -14. -20. -22.
-14. -18. -20. -20.
-20. -20. -18. -14.
-22. -20. -14. 0.0

k = ∞

Lecture 5: Value Function and Iteration

Policy Iteration Steps

vk for the
Random Policy

Greedy Policy
w.r.t. vk

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

K = 2

Iterative Policy Evaluation in Small Gridworld (2)

k = 10

°

k = 3

optimal
policy

0.0 -2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4 0.0

0.0 -6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1 0.0

0.0 -14. -20. -22.
-14. -18. -20. -20.
-20. -20. -18. -14.
-22. -20. -14. 0.0

k = ∞

Lecture 5: Value Function and Iteration

Policy Iteration Steps

vk for the
Random Policy

Greedy Policy
w.r.t. vk

0.0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0.0

K = 2 .25(-1	+	0)	+	.25(-1	+	-1.75)	+	
.25(-1	+	-2)	*	2	=	2.4	

.25(-1	+	-2)	*4	=	-3.0	

.25(-1	+	-1.75)	+

.25(-1	+	-2)	*	3	=	-2.9

Given a policyπ
Evaluate the policy π

vπ(s) = E [R t+1 + γR t+2 + ...|St = s]

Improve the policy by acting greedily with respect to vπ

πj = greedy(vπ)

In Small Gridworld improved policy was optimal, πj = π∗
In general, need more iterations of improvement / evaluation
But this process of policy iteration always converges to π∗
(We always converge to the optimal policy!)

Lecture 5: Value Function and Iteration

Policy Iteration Steps

Lecture 5: Value Function and Iteration

Policy Iteration Summary

Another	way	of	solving	MDP,	like	Value	
Iteration,	but	directly	solves	for	policy.

Usually	requires	less	iterations,	and	uses	
Bellman	Expectation	Equation	(Value	
Iteration	uses	Bellman	Optimality	Equation)

Lecture 5: Value Function and Iteration

Next Week: Model-Free Methods

What	if	we	didn’t	have	all	this	
information	about	the	MDP?	

Lecture 5: Value Function and Iteration

Next Week: Model-Free Methods

What	if	we	didn’t	have	all	this	
information	about	the	MDP?	

Model	Free	Methods!	(Next	Lecture!)

Questions?

