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Summary of Lecture 1

1. Reinforcement Learning (RL) is about an agent maximizing
reward by interacting with its surrounding environment

2. RL has distinct advantages over other Al methods, but often
requires more data or understanding of the problem

Action

3. Agents take actions within an environment. Environment
responds with rewards (or no reward) After an action, the
agent moves into a new state of the environment

4. Figuring out how to tell an agent what actions to take, in
order to maximize reward, is the key to reinforcement
learning and creating a good Al
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Introduction to MDPs

m Markov decision processes formally describe an environment
for reinforcement leaming

m Where the environment is fully observable

m i.e. The current state completely characterises the process

m Almost all RL problems can be formalised as MDPs
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Markov Property

“The future is independent of the past given the present’

A state St is Markov if and only if

P[St+1 |St] = P[St+1 | S4, ..., St]

a The state captures all relevant information from the history
a Once the state is known, the history may be thrown away
m i.e. The state is asufficient statistic of the future
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State Transition Matrix
For a Markov state s and successor state si, the state transition
probability is defined by
PSS’ =P |:St+1 = 5, | St = 5]

State transition matrix P defines transition probabilities from alll
states s to all successor statess?,

to
Pll e Pln

P = from

Pr1 ... Pon

where each row of the matrix sumsto 1.
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Markov Chain

A Markov process is a memoryless random process, i.e. a sequence of
random states S1, Sz, ... with the Markov property.

Definition
A Markov Process (or Markov Chain) is atuple (S, P)
» Sisa(finite) setof states

m P is astate transition probability matrix,
Pss = P[St+1 = 5 |St = 5]
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Example: Student Markov Chain
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Example: Student Markov Chain Episodes

Sample episodes for Student Markov
Chain starting from S1 = C1

S1, 82, ..., 51

a C1C2C3PassSleep C1

a FB FB C1C2 Sleep

m C1 C2 C3 Pub C2 C3 Pass Sleep
m C1FBFB C1C2C3Pub C1FBFB




Lecture 2: Markov Decision Processes

Example: Student Markov Chain Transition Matrix

C1 c2 c3
0.5
0.8

02 04 0.4
0.1

0.9

Sleep

0.2

1.0
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Markov Reward Process

A Markov reward process is a Markov chain with values.

A Markov Reward Process is atuple (S, P, R, V)

a Sis afinite setof states

m P is astate transition probability matrix,

Pss = P[St+1 = 5" |St = 5]
m R isarewardfunction, Rs = E [R¢+1 |St = §]
a Y isadiscount factor, y €[0, 1]
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Return

The return Gt is the total discounted reward from time-stept.

z
Gt= Rt+1+ YRt+2 + ... = Yth+k+1
k=0

a The discount y €[0, 1] is the present value of future rewards
a The value of receiving reward R after k + 1 time-steps is y*R.
m This values immediate reward above delayed reward.

m Yy closeto Oleadsto short-term evaluation
m ycloseto 1leadsto "far-sighted” evaluation
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Why discount?

Most Markov reward and decision processes are discounted. Why?
a Mathematically convenient to discount rewards
= Avoids infinite returns in cyclic Markov processes

= Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may eam more
interest than delayed rewards

= Animal/human behaviour shows preference for immediate
reward

m It is sometimes possible to use undiscounted Markov reward
processes(i.e. Y= 1), e.g.if all sequencesterminate.
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Value Function

The value function v (s) gives the long-term value of state s
Definition

The state value function v (s) of an MRP is the expected return
starting from state s

v(s) = E[Gt | St = s]
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Example: Student MRP Returns

Sample retums for Student MRP:
Starting from S1 = C1lwith y=1/2

Gi=R2+ yRs+ ..+ yT 2Rt

C1 C2 C3 Pass Sleep v1:—2—2*%—2*%+10*% = —2.25
C1 FB FB C1 C2 Sleep vp=-2—-1x1—-1xl—-2x1—-2xL = —3.125
C1 C2 C3 Pub C2 C3 Pass Sleep i=-2-2%3—2x;+1x}—-2x%.. = 34
— 1 1 1 1
CIFBFBC1C2C3PubCl... vi=-—2—1x5—1x%x3—2%5—2%35.. _ —3.20

FB FB FB C1 C2 C3 Pub C2 Sleep
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Example: State-Value Function for Student MRP (1)

v(s) for y =0
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Example: State-Value Function for Student MRP (2)

v(s) for y=0.9
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Example: State-Value Function for Student MRP (3)

v(s) for y=1
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Markov Decision Process

A Markov decision process (MDP) is aMarkov reward process with
decisions. It is an environment in which all states are Markov.

Definition
A Markov Decision Process is atuple (S, A, P, R, y)
m Sis afinite setof states
m A is afinite setof actions
m P is astate transition probability matrix,
P& =P[St+1 = 9|SF s, AFa]
m R isarewardfunction,R £ E[R ¢+1 |[SF 5, AF d]
m Yy isadiscount factor y €[0, 1].
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Example: Student MDP

Facebook
R=-1
Quit Facebook Sleep
R=0 R=-1 R=0

Study

Study Study R=+10
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Policies (1)

A policy ris adistribution over actions given states,

nm(a|s) = P[At = a | St = s]

= A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)
m i.e. Policies are stationary (time-independent),

At ~1t(-|St), Vt>0
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Policies (2)

m Givenan MDP M = (S, A, P, R, y) and a policy 17
m The state sequence S1, S2, ... isaMarkov process (S, P™)

m The state and reward sequence S1, R2, S, ... isaMarkov
reward process (S, P7,R7, y)

m Where

:;s’ = Zﬂ'(3|$) o/

acA

R: = Z m(a|s)R2

acA



Lecture 2: Markov Decision Processes
Value Function

The state-value function vrz(s) of an MDP is the expected return
starting from state s, and then following policy 1

vir(s) = Er[Gt|St =]

Definition
The action-value function qr (s, a) is the expected return
starting from state s, taking action a, and then following policy 7

gn(s, a) = Ex[Gt |St = s, At = q]
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Example: State-Value Function for Student MDP

Facebook va(s) for n(als)=0.5, y=1
R=-1
Quit Facebook Sleep

R=0 R=-1 R=0

Stud Stud)
-1.3 i > 2.7 i >
R=-2
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Optimal Value Function

Definition

The optimal state-value function v«(s) is the maximum value
function over all policies

vi(s) = max VS)

The optimal action-value function g«(s, a) is the maximum
action-value function over all policies

G«(s, @) = max gr(s, a)
m The optimal value function specifies the best possible

performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.
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Example: Optimal Value Function for Student MDP

Facebook vi(s) fory =1
R=-1

Facebook
R=-1
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Example: Optimal Action-Value Function for Student MDP

Facebook qx(s,a) fory=1
R=-1
qx=5

Quit Facebook
R=0 R=-1
q+=6 qx=5

Study
R=+10
l/*:/()

Study
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Optimal Policy

Define a partial ordering over policies
n2mif ve(s) 2vu(s), Vs

For any Markov Decision Process

® There exists an optimal policy rethat is better than or equal to all
other policies, e« >, /'t

= All optimal policies achieve the optimal value function, vr,
(s) = v«(s)

" Al optimal policies achieve the optimal action-value function, g,
(s,a) = g«(s,a)
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Finding an Optimal Policy

An optimal policy can be found by maximising over g«(s, a),

acA

(419) 1 if a=argmax qg«(s,a)
m«(als) =
0 otherwise

® There is always adeterministic optimal policy for any MDP
m |f we know g«(s, a), weimmediately have the optimal policy
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Example: Optimal Policy for Student MDP

Facebook m(als) for y =1
R=-1
qx=5
0 |e—

Quit Facebook
R=0 R=-1
q+=6 qx=5

Study
R=+10
L/*ZIU

Study
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Bellman Expectation Equation for Markov Chain
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Bellman Equation for MRPs

The value function can be decomposed into two parts:
a immediate reward R+ 1

m discounted value of successor state yv(St+1)

v(s) = E[Gt | St = §]

E [Ri+1 + YRts2 + V?Riss + . |Se= S|
E[Rt+1 + Y(Rt+2 + YRt+3 + ...)| St = 5]
E[Rt+1 + yGt+1 | St = 5]

E[Rt+1 + yv(St+1) | St = 5]



Questions?



