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Review of Last Lecture



Summary of Lecture 1
Lecture 2: Markov Decision Processes

1. Reinforcement	Learning	(RL)	is	about	an	agent	maximizing	
reward	by	interacting	with	its	surrounding	environment

2. RL	has	distinct	advantages	over	other	AI	methods,	but	often	
requires	more	data	or	understanding	of	the	problem

3. Agents	take	actions	within	an	environment.	Environment	
responds	with	rewards	(or	no	reward)	After	an	action,	the	
agent	moves	into	a	new	state	of	the	environment

4. Figuring	out	how	to	tell	an	agent	what	actions	to	take,	in	
order	to	maximize	reward,	is	the	key	to	reinforcement	
learning	and	creating	a	good	AI
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Intro to MDPs



Introduction to MDPs

Markov decision processes formally describe an environment  
for reinforcement learning
Where the environment is fully observable
i.e. The current state completely characterises the process  
Almost all RL problems can be formalised as MDPs
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Markov Property

“The future is independent of the past given the present”

Definition
A state S t  is Markov if and only if

P [S t+1 | S t ] = P [S t+1 | S1, ...,S t ]

The state captures all relevant information from the history  
Once the state is known, the history may be thrownaway
i.e. The state is a sufficient statistic of the future
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State TransitionMatrix

For a Markov state s and successor state sj, the state transition  
probability is defined by

State transition matrix P defines transition probabilities from all  
states s to all successor statessj,

where each row of the matrix sums to1.
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Markov Chains



Markov Chain

A Markov process is a memoryless random process, i.e. a sequence  of 
random states S1, S2, ... with the Markov property.

Definition
A Markov Process (or Markov Chain) is a tuple (S, P)  

S is a (finite) set of states
P is a state transition probability matrix,
Pss' = P [S t+1 = s' | S t = s]
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Example: Student MarkovChain
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Example: Student Markov Chain Episodes

Sample episodes for Student Markov  
Chain starting from S1 = C1

S1,S2, ...,ST

C1 C2 C3 Pass Sleep  C1 

FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub C1 FBFB
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Example: Student Markov Chain TransitionMatrix
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Markov Reward Processes



Markov RewardProcess

A Markov reward process is a Markov chain with values.  

Definition
A Markov Reward Process is a tuple (S, P, R, γ)  

S is a finite set of states
P is a state transition probability matrix,
Pss' = P [S t+1 = s' | S t = s]
R  is a reward function, Rs =  E [R t+1 | S t  = s]
γ is a discount factor, γ ∈[0, 1]
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Example: Student MRP
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Return

Definition
The return Gt is the total discounted reward from time-stept.

t +2

∞Σ

k=0

kGt =  R t+1 + γR + ... = γ R t + k+1

The discount γ ∈[0, 1] is the present value of future rewards  
The value of receiving reward R after k +  1 time-steps is γk R.  
This values immediate reward above delayedreward.

γ close to 0 leads to short-term evaluation
γ close to 1 leads to ”far-sighted” evaluation
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Why discount?

Most Markov reward and decision processes are discounted.Why?
Mathematically convenient to discount rewards  
Avoids infinite returns in cyclic Markov processes
Uncertainty about the future may not be fully represented
If the reward is financial, immediate rewards may earn more  
interest than delayed rewards
Animal/human behaviour shows preference for immediate  
reward
It is sometimes possible to use undiscounted Markov reward  
processes (i.e. γ =  1), e.g. if all sequencesterminate.
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Value Function

The value function v (s) gives the long-term value of state s

Definition
The state value function v (s) of an MRP is the expected return  
starting from state s

v(s) = E [Gt | S t = s]
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Example: Student MRPReturns

Sample returns for Student MRP:  
Starting from S1 =  C1 with γ = 1/2

G1 = R2 + γR3 + ...+ γT−2RT
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Example: State-Value Function for Student MRP (1)
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Example: State-Value Function for Student MRP (2)
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Example: State-Value Function for Student MRP (3)
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Markov Decision Processes



Markov DecisionProcess

A Markov decision process (MDP) is a Markov reward process with  
decisions. It is an environment in which all states are Markov.

Definition
A Markov Decision Process is a tuple (S, A, P, R,γ)  

S is a finite set of states
A is a finite set of actions
P is a state transition probability matrix,

ssj
a j

t +1 t tP = P [S =  s | S =  s, A = a]
a
sR  is a reward function, R  =  E [R t +1 t t| S =  s, A = a]

γ is a discount factor γ ∈[0, 1].
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Example: Student MDP
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Policies (1)

Definition

A	policy	π	is	a	distribution	over	actions	givenstates,

π(a|s) = P[At = a | St = s]

A policy fully defines the behaviour of an agent
MDP policies depend on the current state (not the history)
i.e. Policies are stationary (time-independent),
At	∼π(·|St	),	∀t	>0
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Policies (2)

Given an MDP M = (S,A, P, R, γ) and a policy π
The state sequence S1, S2, ... is a Markov process (S, Pπ )
The state and reward sequence S1, R2, S2, ... is a Markov  
reward process (S,Pπ ,Rπ ,γ)
where
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Value Function

Definition
The state-value function vπ (s) of an MDP is the expected return  
starting from state s, and then following policy π

vπ (s) =  Eπ [Gt | S t  = s]

Definition
The action-value function qπ (s, a) is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ [Gt | S t = s,A t = a]
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Example: State-Value Function for Student MDP
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Optimal Value Function

Definition
The optimal state-value function v∗(s) is the maximum value  
function over all policies

π∗ πv (s) =  max v (s)

The optimal action-value function q∗(s, a) is the maximum  
action-value function over allpolicies

π∗ πq (s, a) = max q (s, a)

The optimal value function specifies the best possible  
performance in the MDP.
An MDP is “solved” when we know the optimal value fn.
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Example: Optimal Value Function for Student MDP
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Example: Optimal Action-Value Function for Student MDP
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Optimal Policy

Define a partial ordering over policies

π	≥	π if	vπ	(s)	≥	vπj	(s),∀s

Theorem
For	any	Markov	Decision Process

There	exists	an	optimal	policy	π∗that	is	better	than	or	equal	to	all	
other	policies,	π∗ ≥π,	∀π
All	optimal	policies	achieve	the	optimal	value	function,		vπ∗
(s)	= v∗(s)
All	optimal	policies	achieve	the	optimal	action-value	function,		qπ∗
(s,a) = q∗(s,a)
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Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s,a),

There is always a deterministic optimal policy for any MDP  
If we know q∗(s, a), we immediately have the optimal policy
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Example: Optimal Policy for Student MDP

6 8 10

06

0.4
0.2

0.4

π*(a|s) for γ=1Facebook
R = -1

q* =5

Quit
R =0
q*=6

R =-2
q*=6

Facebook
R =-1
q*=5

Study

R =-2
q*=8

Sleep
R =0
q*=0

Study
Study

R = +10
q* =10

Pub
R =+1
q*=8.4

Lecture 2: Markov Decision Processes



Lecture 2: Markov Decision Processes

Bellman	Expectation	Equation	for	Markov	Chain



Bellman Equation for MRPs

The value function can be decomposed into two parts:  

immediate rewardR t+1

discounted value of successor state γv (S t+1)

v(s) = E [Gt | S t = s]
= E [R + γR 2

t +1 t +2 t +3 t+ γ R +  ... | S = s ]
= E [R t+1 + γ (R t+2 + γRt+3 + ...) | S t = s]
= E [R t+1 + γGt+1 | S t = s]
= E [R t+1 + γv(S t+1) | S t = s]
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Questions? 


